Analysis of immunological nonresponsiveness to the 19-kilodalton fragment of merozoite surface Protein 1 of Plasmodium yoelii: rescue by chemical conjugation to diphtheria toxoid (DT) and enhancement of immunogenicity by prior DT vaccination.
نویسندگان
چکیده
The Plasmodium merozoite surface protein 1 (MSP1) is a leading vaccine candidate for protecting against the blood stage of malaria. Previous studies have shown that the 19-kDa carboxyl terminus of this protein is able to induce protective immunity in some monkey and mouse strains. We show that immunization with the recombinant Plasmodium yoelii 19-kDa fragment of MSP1 (MSP1(19)) expressed in Saccharomyces cerevisiae (yMSP1(19)) can induce protective antibodies in several inbred mouse strains and one outbred mouse strain. However, mice expressing the H-2(s) major histocompatibility complex haplotype are unable to generate yMSP1(19)-specific antibodies. While synthetic peptides derived from MSP1(19) are immunogenic in B10.S mice, they cannot function as helper epitopes, and immunization with yMSP1(19) does not induce T cells that recognize the recombinant protein or synthetic peptides corresponding to its sequence. Nonresponsiveness could be overcome by using chemical linkers to conjugate yMSP1(19) to diphtheria toxoid (DT), resulting in immunogens capable of inducing protective yMSP1(19)-specific antibodies in both MSP1(19)-responsive and otherwise nonresponsive mouse strains. The ability of sera from mice immunized with the conjugate to inhibit binding of a protective monoclonal antibody (MAb 302) to yMSP1(19) correlated strongly with a delay in the prepatent period. Chemical conjugation of yMSP1(19) to DT may be a preferred method to enhance immunogenicity, as carrier priming experiments demonstrated that an existing immune response to DT enhanced a subsequent antibody response to yMSP1(19) after vaccination with yMSP1(19)-DT. These results have important implications for the development of a malaria vaccine to protect a population with diverse HLAs.
منابع مشابه
Preparation and Evaluation of Diphtheria Toxoid-Containing Microspheres
Preparation of chitosan (CS) microspheres as a novel drug delivery vehicle for intranasal immunization using high, medium and low CS molecular weight (MW) was investigated in this study. Diphtheria toxoid (DT) was used as a model antigen. The emulsion-solidification method was adopted for microencapsulation of DT. In the first step, following the purification of semi-crude DT by the ion-exchan...
متن کاملPreparation and Evaluation of Diphtheria Toxoid-Containing Microspheres
Preparation of chitosan (CS) microspheres as a novel drug delivery vehicle for intranasal immunization using high, medium and low CS molecular weight (MW) was investigated in this study. Diphtheria toxoid (DT) was used as a model antigen. The emulsion-solidification method was adopted for microencapsulation of DT. In the first step, following the purification of semi-crude DT by the ion-exchan...
متن کاملPreparation and evaluation of chitosan nanoparticles containing Diphtheria toxoid as new carriers for nasal vaccine delivery in mice
The aim of me present work was to investigate rhe potential utility of nanoparticles made of chitosan (CS) and also CS chemically modified with polyethylene glycol (CS-PEG) as new vehicles for improving na^al vaccine delivery. For mis purpose, diphtheria toxoid (DT) was chosen as a model antigen. DT was entrapped within nanoparticles made of CS of different molecular weight, and also made of C...
متن کاملPreparation and in-vitro evaluation of sodium alginate microspheres containing diphtheria toxoid as new vaccine delivery
During last two decades, polysaccharides such as alginate (Alg) alone and in combination with other biopolymers are widely used in vaccine and drug delivery systems. The aim of the present work was to investigate the potential utility of microparticles made of alginate (Alg) as new vehicles for improving nasal vaccine delivery. For this purpose, diphtheria toxoid (DT) was chosen as a model an...
متن کاملPseudomonas aeruginosa PAO-1 Lipopolysaccharide-Diphtheria Toxoid Conjugate Vaccine: Preparation, Characterization and Immunogenicity
BACKGROUND Treatment of Pseudomonas aeruginosa PAO-1 infections through immunological means has been proved to be efficient and protective. OBJECTIVES The purpose of this study was to produce a conjugate vaccine composed of detoxified lipopolysaccharide (D-LPS) P. aeruginosa and diphtheria toxoid (DT). MATERIALS AND METHODS Firstly, LPS was purified and characterized from P. aeruginosa PAO1...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 71 10 شماره
صفحات -
تاریخ انتشار 2003